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CHAPTER TWO

Statistical Tools

The apparently random character of turbulent flows strongly suggests that statistical
methods will be fruitful. In this chapter, we discuss some statistical techniques, in
preparation for later chapters. The reader is presumed to have a modest background
in probability theory and this chapter summarizes the main elements, while placing
statistical ideas in the context of turbulent flows (those whose knowledge of the basic
theory is rusty or nonexistent should perhaps keep one of the many textbooks on the
mathematics of probability and statistics to hand; Lumley (1970) and Monin and
Yaglom (G 1971) describe the theory as applied to turbulence).

As discussed in Chapter 1, despite being generally considered as deterministic,
turbulent flows are highly nonunique in practice. Thus, if an experiment is repeatedly
carried out, a different velocity field is obtained in each realization, even if the
experimental conditions are nominally the same (i.e., the experimenter endeavors
to reproduce the same flow). This is because the detailed behavior of the flow in any
one realization is extremely sensitive to small changes in the initial or boundary
conditions, which the experimenter cannot control to infinite precision. This type
of problem is ideally suited to statistical methods. Indeed, it was the nonrepeatability
of an experiment such as tossing a coin that led to the idea of probabilities in the first
place. By looking at the statistical properties of an ensemble of different flow realiza-
tions, all obtained using the same nominal conditions, one hopes to extract useful
quantities, namely probabilities and averages, which depend only on parameters that
the experimenter controls. To take an example, the detailed behavior of the turbulent
wake of a sphere placed in a uniform flow may vary with tiny perturbations in the
incoming stream and small vibrations of the sphere, to name just two possible
extraneous factors, but one hopes and expects that, for instance, the average velocity
is well defined. Of course, the flow statistics depend on the gross experimental
conditions used, for example, a turbulent boundary layer can have quite different
thickness and drag with suction than without, but we expect them not to change
significantly with small variations in those conditions.

Given an ensemble of different flow realizations, we can define the associated
probabilities of flow variables' taking on particular values, or more precisely, ranges
of values, since they are generally continuous variables. Thus, we imagine an experi-
ment performed very many times under nominally the same conditions, each time
producing a different realization of the flow, and use the frequency with which a

! Flow variables range from simple ones, such as the pressure at a single point and time, to more
complicated ones that are tensorial or obtained from the flow at many points and times.
p y p
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given flow variable falls into a given range of values as a definition of the probability
for that range.

Mean (or average) values are of particular importance in the theory of turbulence.
We can define means by taking the average over an increasingly large number of
realizations of the flow under the same nominal conditions. The mean value can also
be calculated in the usual way from a knowledge of the probabilities of the given
quantity as a sum (or integral for continuous variables) over all possible values,
weighted by their probabilities. In particular, the mean flow is defined as having
the average values of the velocity and pressure (together with the density and perhaps
other fluid properties if the fluid is compressible, a case which is not considered in
this book). The departure of any given realization from the mean can be calculated
by subtracting the mean flow and is conventionally identified with turbulence. That
is, the total flow is split into a mean part and a fluctuating component, whose
average is zero and which is usually thought of as representing the turbulence. For
instance, the mean values of the squared fluctuating velocities are often used to
characterize the intensity of turbulence. We shall come across numerous other
important quantities defined by averages during the course of this book.

2.1 Probabilities and Averaging

Consider any flow variable U, which might represent a velocity component or the
pressure at a given position and time, or a more complicated quantity derived from
different points and times. U will take on different values in different experiments.
One may average the quantity U by summing over experimental realizations, divid-
ing by the number of realizations, and letting that number go to infinity. Thus we
obtain the mean of U, variously denoted as U or (U) (or sometimes E(U), then called
the expectation of U). The probability distribution function, P(U), can also be
defined so that

U,
J P(U)dU 2.1
U

gives the proportion of realizations in the ensemble for which U takes on values in
the range U_ < U < U, that is, the probability that it falls in that range. The idea
here is that P(U)dU gives the probability of U lying between U and U + dU and that
we should sum up such elementary contributions over the range U_ to U, to deter-
mine the overall probability that U_ < U < U,.. The probability of a given event is
thus the proportion of the ensemble for which it occurs and (2.1) gives the prob-
ability that U_ < U < U,..

Since U must always take on some value,

Jm P(U)dU =1 2.2)

is an identity which the distribution function, P(U), must always satisfy. The mean of
U can also be calculated from P(U) via

U= roo UP(U)dU 2.3)

—00
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which expresses the fact that the average can be computed by taking the proportion
of the sample in the range U to U + dU, which is P(U)dU, multiply it by U and sum
over all possible values of U. We can likewise determine the mean of any function of
U from

- +0o0
fU) = J f(U)PU)dU 24)

Given U_ < U,, if we take f(U) as the window function

fy=1 if U <U<U, 2.5)
fU)=0 if U<U orU=>U,

the average value of f(U) is

U,
f(U) = J P(U)dU (2.6)
U

that is, the probability that U falls in the range U_ < U < U, from which P(U) can
be obtained by differentiation with respect to U_ or U,. Thus, knowledge of the
probability distribution function allows calculation of average values from (2.4),
while, working in the other direction, averaging can be used to derive the distribu-
tion function. Because mean values are often easier to determine experimentally,
averaging of window functions has formed the basis of a popular experimental
technique for the measurement of probability distributions. In this method, an
experimental signal, U(z), is sent through an electronic device whose output is 1
for a certain range of values and O outside that range, followed by averaging to
obtain the probability that U(#) lies in the given range. Experimentally, time aver-
aging is usually employed for steady flows, whereas we have defined both probabil-
ities and mean values via an ensemble of experiments. Conditions under which the
two approaches give the same results will be discussed in the next section.

An obvious property of averaging is that it is a linear operation, that is, if A is any
constant

0 =T 2.7)
and, if V is any flow quantity
TFV=T+V 2.8)

Since flow quantities are usually functions of spatial location and time (e.g., a velo-
city component), governed by differential equations, we will frequently need to take
averages of their derivatives. Linearity allows one to write

U(x + h) — Ux) _ Ux + h) — Ux)

A A (2.9)
and taking the limit as » — 0 we have
oU 93U
—=— (2.10)
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which indicates that one can take averages inside derivatives, an operation we will
often perform in later chapters without explicitly noting the fact. Note that this holds
for both space and time derivatives and that similar results apply to integrals over
either space or time. Mathematically, we might say that averaging commutes with
differentiation and integration.

Most quantities occurring in the theory of turbulence are continuous variables,
that is, they take on a continuum of values and the value in one experiment is never
exactly the same as that in any other. This behavior may be contrasted with that of
discrete variables (e.g., the number of times the velocity exceeds a certain critical
value in a given time range), which can only take on values within a certain coun-
table set of numbers and thus tend to repeat themselves. The distribution function of
a discrete variable consists of Dirac functions, whose amplitudes give the associated
probabilities. For instance, the trivial case in which the variable U takes the same
value Uy in all realizations is described by P(U) = §(U — U,), where the amplitude is
1 since that gives the probability that U = U,. One can also consider variables which
are part continuous and part discrete, whose distribution functions consist of Dirac
functions embedded within a non-Dirac continuum. Notice that, although the prob-
ability distributions of continuous variables derived from turbulence are usually
smooth functions, in general the probability distribution of a continuous variable
may be a discontinuous function. For example, a uniformly distributed random
variable in the range 0 < U <1 has P(U) =1 in that range, and zero outside.
However, we do not intend to open the door on the various mathematical pathol-
ogies which might arise and, at worst, the distribution functions we have in mind for
continuous variables show isolated jump discontinuities of the type illustrated by this
example.

Examples of continuous U(#) and their probability distributions are shown in
Figures 2.1-2.3. In interpreting these figures, we assume that mean values can be
calculated using time averaging, detailed conditions for which are given in the next
section. The first example, Figure 2.1, is typical of a turbulent quantity in a steady
flow (statistical steadiness being
one of the conditions for use of
time averaging). The figure shows
the time history, U(¢), the prob-
ability distribution of U, and the

=}

result of conversion of U(t) to 0
and 1 values, with 1 when U lies
in some range U_ < U < U,, an
operation that might, in practice,
be performed by an electronic
gate. As discussed above, the

mean value of the resulting signal
should give the probability that U

Figure 2.1. Sketch of the time history of a typical turbulent random  lies in the given range. This mean,
quantity with its probability distribution function. Also shown is the and hence the probability that

result of passing the signal through a device that produces an output
of 1 if the quantity lies in a given range and 0 if it lies outside the
range. The average of the device output is the probability that the

U_<U~<U,, can be obtained
by time averaging the output of

quantity lies in the range. the gate. The distribution function,
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P(U), perhaps determined in the R
above manner, is shown in the
figure and has a single hump,
typical of many turbulent flow
quantities. The tails of the distri-
bution, which represent rare
values of U, are the most difficult
to measure accurately, since such
values only occur infrequently
and so very long sampling times Figure 2.2. Time history and distribution function of a random quan-
are needed to obtain conver ged tity having a double-hump probability distribution.

statistics. Figure 2.2 illustrates a

less common type with a double-

humped, strongly asymmetric distribution. Figure 2.3 shows a sine wave, which

might come from a nonrandom periodic flow if the amplitude and phase of the

wave are repeatable from one experiment to another. In that case, U takes the

same value in all realizations and is not truly random (nor statistically steady, so

one cannot use time averaging to obtain mean values). It is then a discrete variable

with only one possible value whose probability is 1, yielding a distribution function
consisting of a single Dirac function, whose position is a sinusoidal function of time. If,

on the other hand, and as implicit in the figure, the phase of the wave varies randomly

from one realization to another with uniform probability over the range 0 to 7, then

the signal is statistically steady, with the probability distribution shown in the figure

and mean value equal to zero. One could also allow the phase to vary between
realizations over a different range of values or nonuniformly, in general yielding
statistics that vary periodically with time. At first sight, such sine waves appear to

have little to do with turbulence, but if one imagines adding a certain amount of the

signal in Figure 2.1 to that in Figure 2.3, the result resembles a periodically modulated
turbulent flow, such as that produced by blowing across the mouth of a bottle to
produce a tone. A turbulent shear layer is produced over the mouth of the bottle,

which, coupled to the Helmholtz resonance of the bottle, yields a turbulent flow with

nearly periodic, self-sustained oscillations. If the phase of the oscillations varies
uncontrollably from realization to realization of the flow, as is likely unless the
oscillations are somehow phase locked, the oscillations themselves will appear as
random fluctuations, whereas if

the phase is the same in all realiza- A
tions, they appear as a periodic ve)

mean flow superimposed on a per- =

iodically modulated random com- T

ponent due to turbulence in the

shear layer. We will return to ‘ > g\—v“—“—s'

this example in the next section. E /
Given several flow quantities, | 7777770

one can define a joint probability ’
distribution function. For exam-

ple, in the case of two _Varlables’ Figure 2.3. Time history of a single realization and probability distri-
U, and U,, the proportion of the bution for an ensemble of randomly phased sinusoids.
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ensemble in which U, takes values between U; and U; + dUy, and U, takes values
between U, and U, + dU, is given by P(U;, U,)dU,dU,. Thus,

Usy (Ut
J J P(Uy, U,)dU,dU, (2.11)

U,_ Ju,_

gives the probability that U;_ < U; < Uy, and U,_ < U, < U,,. Clearly

+00 (+00
J J P(U,, U,)dU,dU, =1 (2.12)
and
+00
Py(Uy)) = J P(Uy, U,)dU, (2.13)
+00
P,(U) =J P(U,, Uy)dU, (2.14)

give the distribution functions of U; and U, individually. The average of any func-
tion f(Uy, U,) can be obtained as

+00 (+00
f(U1,Uz)=J J F(Uy, Up)P(U;, Us) dUydU, (2.15)

—00 —00

The quantity P(Uy, U,) is often referred to as the joint distribution of U; and U,,
while the expression ‘joint statistics” is also sometimes used. Note that nothing stops
us taking U; and U, as the values of a single flow quantity at different fixed times, #;
and 1,, or at different spatial locations. It should be apparent how the above ideas
can be extended to an arbitrary number of flow variables. The joint probability
distribution of N variables, Uy, ..., Uy, is a function of those variables and can
be thought of as a scalar field in the N-dimensional space with coordinates
Uy, ..., Uy. For instance, the probability distribution, P(U), of the vector velocity,
U = (Uy, U,, U;), at a given point and time in a turbulent flow is a scalar function in
the three-dimensional space spanned by the vector U. Thus, the probability that the
vector U falls within a small volume element, d*U, of that space is P(U)d’U.

Conditional probabilities and averages may be introduced as follows. The basic
idea is to restrict attention to those realizations in which some flow quantity, U, say,
takes on a particular value, that is, experiments in which U, has values other than
the given one are ignored. Within this subensemble, the proportion of experiments in
which Uj has values between U; and U; + dUj is denoted by P(U;|U,)dU;. Thus,
P(U,|U,) is the probability distribution of U;, conditional on U, having the given
value. When U, is a discrete value of the random variable on which the statistics are
conditioned, this definition is satisfactory, but, as it stands, it does not work other-
wise, because U, will never have the given value exactly. In that case, one allows U,
to take on a small range of values between U, and U, + dU,, and defines P(U;|U,)
as the proportion of such experiments that also give U; in the range U; and
U, + dU;. Now, the proportion of the total ensemble satisfying both conditions is
P(U;, U,)dU,dU,, while the proportion of the total in which U, lies in the range U,
to U, + dU, is P5(U,)dU,. It follows, after a little thought, that
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P(U,, Us)

P(U,|Uy) = Py (Uy)

(2.16)
which can be taken as the definition of the probability distribution of Uy, conditional
on a nondiscrete value of U,. Thus, given the joint distribution function, P(Uy, U,),
of continuous variables, one can calculate the conditional distribution functions
from (2.14) and (2.16). Notice that there is a difficulty when P,(U,) = 0, mathema-
tically apparent through division by zero. Suppose, for instance, that P,(U,) =0
over some range of values. It is evident that there is little sense in trying to define
statistics conditional on values of U, in that range, since they never occur. Thus,
P(U;|U,) is undefined when U, is a continuous value of the conditioning variable
and P,(U,) = 0. From (2.13) and (2.16), we obtain

o0
Py(Uy) = J P(U,1U)P»(Uy) dU, (2.17)
—00
showing that the single-variable distribution function can be calculated by combin-
ing the conditional distributions for all possible values of the conditioning variable,
weighted by their probabilities. One may extend the above ideas to the joint dis-
tribution of any number of random variables with multiple conditioning variables.
Conditional averages can also be defined. Thus, the mean of U, taken only over
realizations in which U, has a given value, is

—+00
vivs) = | vipwiuy vy (2.18)
and can be used to construct the unconditional average via
U, = J (Uy | Uy)P2(U,) dU, (2.19)

This result shows that one may calculate the average of U; in two stages. First
determine the conditional averages with U, fixed, then average of all possible values
of U,. This may seem like a rather indirect way of proceeding, but such an approach
sometimes proves the easiest way of determining average values. Once again, exten-
sion to multiple conditioning variables is straightforward.

Conditional averages are often useful in interpreting data from turbulent flows.
Consider, for instance, the example of a boundary layer shown in Figure 2.4. The
frontier of turbulence is sharp and mobile. Sometimes a given point finds itself inside
the turbulence and sometimes it is outside. Data obtained inside and outside will be
quite different in character and, if one simply takes the average of some flow quan-
tity, the result does not generally reflect what is happening in either region, but
instead gives some intermediate value. However, provided one can experimentally
identify when a given sensor lies inside and outside the turbulent region, two con-
ditional averages may be calculated: the first giving the average value inside the
turbulence, the second outside. These conditional values will provide more detailed
information than the unconditional average and the technique can be applied when-
ever one suspects statistics that differ significantly under identifiably different cir-
cumstances. In the case of the boundary layer, the variable, U,, on which the
averages are made conditional is discrete. Thus, although the frontier of turbulence
is not really infinitely thin, a threshold value for some measure of turbulence intensity

37
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TURBULENT REGION

’%ERVANON POINT

Figure 2.4. Sketch of a turbulent boundary layer at two different times, illustrating the use of conditional
averaging. The hatched region represents the zone of turbulence. The dashed line is the mean location of
the frontier between turbulent and laminar flow, while the continuous line is its instantaneous location.

is employed and one declares the measurement point to be inside the turbulence if it
exceeds the threshold. The results should be insensitive to the choice of threshold,
since the frontier of turbulence is thin.

Conditional averaging is often implemented by gating the signal, U;(z), whose
conditional average one wishes to measure. Suppose, for instance, that we wanted to
determine the average of some flow variable U; at a point in a boundary layer,
conditional on being inside the turbulence. Let U, = 0 outside the turbulence and
U, = 1 inside, denoting the probability of the latter by p. Thus p is the probability of
turbulence at the given point. Gating simply takes U; and U, as inputs and outputs
U, if U, = 1, and zero otherwise. The average of the gate output can be calculated as
follows. In a large number, N, of realizations, the number in which the output is
nonzero is pN. The average of the output over those nonzero realizations is
(Uy | Uy = 1), so the total sum of the different outputs over all N realizations is
pN(U, | U, = 1). Dividing by N, we obtain the average output

U0, =p(Uy | Uy = 1) (2.20)

while, as discussed earlier, p = U,. Thus, we can calculate the conditional average as

(U | Uy =1) === 2.21)

This result indicates that we should divide the averaged gate output by the prob-
ability that the given measurement point lies inside the turbulence, which can be
obtained by averaging U,, to determine the required conditional average. The prob-
ability that a given point lies inside the turbulence is often called the turbulent
intermittence and, in the case of the boundary layer, decreases with distance from
the body surface owing to the decreasing frequency of turbulence, from a value very
close to 1 in the region near the wall, to 0 outside the layer. The increasing rarity of
turbulence at larger distances means that longer time samples are needed to obtain
convergence of the averages in (2.21). Given that one can measure conditional mean
values, conditional probabilities can be obtained by conditionally averaging func-
tions which are 1 inside some range and O elsewhere, as for unconditional prob-
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ability distributions. As the range used becomes narrower, one again needs to sample
for longer to obtain converged statistics.

From (2.16), if U; and U, are statistically independent of one another, that is,
specifying U, does not affect the distribution of U; and vice versa, we have

P(Uls UZ)
P,y(Uy) =P(U{|U)) = — 2.22
1(U1) (U11U) P,(0,) (2.22)
or
P(Uy, Uy) = P1(Up)P,(Uy) (2.23)

which expresses the important fact that the joint distribution function of independent
variables is simply the product of their individual distribution functions. One con-
sequence of (2.23) is that

+00 [+00
Uluzzj j U,U,Py(Uy)P5(Us) dU, dU,

o - - .24
=j U1P1<U1>dU1J U,P(Us) dU, = T, T,

showing that the mean of a product of statistically independent factors is the product
of their means. In many turbulent flows, it is found that the velocity at widely
separated times appears to approach statistical independence as the temporal separa-
tion increases. That is, if U(#;) and U(#,) are velocity components at the two times,
they approach independence as |t; — £;| — oo. Put another way, knowledge of the
flow at the earlier time does not tell us much about its later behavior, which can be
expressed by saying that the flow has only limited statistical memory. We will return
to this topic in the next section when discussing correlation functions.

2.2 Statistical Moments and Correlations

Given a quantity U, the mean value of any power,
~+00
a,=0"= J U'P(U)dU (2.25)
—0Q
is called the moment of order v or vth moment of U. The moment of order 1 is, of
course, the mean of U. The central moments are defined by
- +00
w, =U-0)" = J (U-TU)"P(U)dU (2.26)
—0Q
and, apart from wq, which is zero, are generally more important than the a, in the
theory of turbulence. Distribution functions exist for which the integrals in (2.25)
and (2.26) fail to converge for some values of v, which means that the corresponding
moments do not exist. However, this is not usually the case for variables derived
from turbulent flows, at least not for the positive orders of moments we have in mind
here. The most important central moment is obtained for v =2 and is called the
variance, given by

o = Var(U) = u, = (U — U) (2.27)
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where o > 0 is the standard deviation of U and measures how far about its mean U
varies, that is, the magnitude of the random fluctuations in U. Furthermore, if U;
and U, are statistically independent, it is not difficult, using (2.24), to derive

Var(U; + U,) = Var(U,) + Var(U,) (2.28)
which can be extended to show that the variance of the sum of any number of
independent variables is the sum of their variances.

The next two central moments can be nondimensionalized using o to obtain the
skewness

= = (2.29)
and flatness factor (or kurtosis)
uy  (U-0)
=42 (2.30)

of U. These higher-order moments are of considerably less importance than the
variance, but the skewness is one possible, if coarse, measure of lack of symmetry
of the distribution of U about its mean, whereas the flatness factor provides limited
information about how extensive the tails of the distribution are.

Given two variables, U; and U,, we can define their correlation

R= (U - U)(U, - 0y) (2.31)

and, expressing the same quantity in nondimensional form, the correlation coeffi-
cient

_ R (U -U)U, -0y
010 010

(2.32)

which always lies between —1 and +1 and is zero for statistically independent
variables. To derive the bounds on p, let #; = Uy — Uy, u, = U, — U, be the fluc-
tuations in U; and U,, so that R = %yu;. Since

(11 + A3)* > 0 (2.33)
for any constant A, expanding the square leads to

0322 +2RA+ 07 > 0 (2.34)
for any A, which implies that

R| <010, (2.35)
or, in other words, |p| < 1, as stated above. Observe that if p takes on one of its
limiting values, p = %1, then the above argument shows that o,#; = +0yu%, and the
random variables are deterministically related, since their fluctuations have the same

ratio in all realizations. To show that R = p = 0 when the variables are statistically
independent, we note that

R =i, = (Uy = U)(Uy = Uy) = (U; = Up) (U, = U,) = 0 (2.36)
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where we have used (2.24) to write the mean of the product as a product of the
means. It follows that R and p are measures of statistical dependence, although it
should be noted that they might be zero even if the variables are not statistically
independent.

As remarked at the end of the last section, many turbulent flows are thought to
asymptotically approach statistical independence at wide temporal separations. This
is reflected in correlation coefficients that go to zero at large temporal separation,
though not necessarily monotonically. Thus, if U(#) is some velocity component,
U, = U(t;) and U, = U(t,) decorrelate as |t; — ;| — oo, that is, the correlation
coefficient p(¢1, ) — 0. At zero time separation, p(¢;,?,) = 1 takes its maximum
value, from which it falls away at nonzero |¢; — ,|. The order of magnitude, ©, of
the temporal separation required for significant decorrelation is referred to as the
correlation time. Decorrelation is also often observed between the velocities at two
points in space at a single time as a function of spatial separation. The distance
required for significant spatial decorrelation, or correlation length, is an important
measure of the size of the large scales of turbulence, as discussed in Chapter 1.
Chapter 3 examines the different time and space scales present in turbulent flows
in some detail, but for the moment we want to consider the process of time averaging
of flow quantities.

We noted earlier that time averaging is often used for experimental determination
of the statistical properties of steady flows and we now want to pose the question as
to when this leads to the same results as the ensemble definition. The flow is assumed
statistically steady, for otherwise time averaging will mix together differing statistics
from different times and there is no real hope that it will yield ensemble averages
corresponding to a specific time. Consider some time-dependent flow quantity U(z)
and define the time average as

T
U = H U(t) dt (2.37)
0

whose ensemble average yields

= 1 (T_ _

Umn = —J Udt =U (2.38)
0

since the flow is supposed statistically steady. This shows that the ensemble average

of UM agrees with the ensemble average of U. Subtracting (2.38) from (2.37),

squaring and ensemble averaging, we find

. 1 (T 2o Tt
Var(U< )) - (T JO udt) = WL JO u(t)yu(ty) dt,dt, (2.39)
where u(t) = U(t) — U is the fluctuation in U. Introducing the correlation function

u(t)u(ty) = Rty — 1) (2.40)

which is a function of the temporal separation #; —#, alone, thanks to statistical
steadiness of U(¢). Changing integration variables to #; and t = #; — t,, instead of #;
and 1,, the integral over #; can be performed to give

M
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Var(U(T)) = a—;JT < - |—;|> p(r)dr (2.41)
-T

where p(t) = R(t)/0? is the correlation coefficient at time separation 7 and o is the
standard deviation of U. Suppose that p(r) — 0 sufficiently rapidly as |t| — oo that
the integral

00
O = J |o(7) dT (2.42)
converges, yielding a correlation time.? One can then bound the integral in (2.41) to
obtain

o(0M) < (g)l/za (2.43)

where o(U™) is the standard deviation of U™. It follows that o(U™) — 0 as
T — oo, that is, the random fluctuations of the finite time average, UD, about its
mean value, U, can be made as small as one likes by increasing the averaging time, T.
That is, if T is taken large enough, the fluctuations in U™ are very small and the time
average is a good estimate of the ensemble average. We conclude that time averaging
over a sufficiently long period yields the same results as ensemble averaging for
steady flows provided that there is rapid enough decorrelation that (2.42) converges.
In that case, equation (2.43) can be used to estimate the error involved in the time
average. The error decreases only slowly with increasing averaging time, propor-
tional to T~Y2. This type of calculation is often made when designing statistical
measurements of turbulent flows. One asks how long an averaging time is needed
for convergence of the average to within an acceptable margin of error. As we saw
earlier, the determination of probability distributions can be reduced to the calcula-
tion of appropriate averages.

The time average (2.37) is inappropriate for unsteady flows; for instance, in the
case of turbulent flow generated by an explosion, one must repeatedly carry out the
experiment to produce the ensemble statistics. If a time average is employed it
includes all stages of the explosion and neither converges nor yields results which
meaningfully describe any given stage. However, consider the example sketched in
Figure 2.5 of a cylinder inside a piston engine that is turning at constant speed and
load. In such a flow, there are turbulent fluctuations from one cycle to the next, so a
single realization of the flow is not periodic, but we might expect the statistical
properties of the flow, for instance the mean velocity, to vary periodically with
time. That is, the flow statistics vary throughout the cycle, but those at time ¢ are
the same as those at time ¢ + 7, where 7 is the period of oscillation of the piston. In
that case, a time average can be defined by

Z

UN@) = % U(t + nt) (2.44)

i

2 Although precise expressions, such as (2.42), for correlation times arise in particular circumstances, in
general it is better to think of them as order of magnitude scales. The same is true of correlation lengths.



rather than (2.37) and an argument
very similar to that used above
shows that, provided N is suffi-
ciently large and there is rapid de-
correlation of U(t+nt) with
increasing temporal separations,
(2.44) will yield a good approxima-
tion to the ensemble average. As
before, probabilities can be deter-
mined by appropriate averaging.
Blowing across the mouth of a
bottle at high Reynolds number to
produce an audible tone provides
an example in which, if one had
never done the experiment, one
might expect the flow to be non-
oscillatory, whereas, in fact, it has
important, nearly periodic oscilla-
tions, together with fluctuations
from cycle to cycle of the oscillations
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Figure 2.5. Illustration of a periodic turbulent flow. The two times
shown, #; and #,, are an integral number of periods apart so that
the flow is nominally the same. It will, in fact, be different in detail
because of turbulent fluctuations, as we have attempted to show
schematically. The turbulent-velocity fluctuations sketched are
superimposed on a periodic mean flow, which is the same at the

due to turbulence in the periodically — two times.

modulated jet/shear-layer over the

mouth of the bottle. In this example, the flow itself generates self-sustained oscilla-
tions, in contrast with that of Figure 2.5, whose periodic variations are externally
imposed by the piston. Repetition of the experiment to provide an ensemble yields
oscillations whose phase varies from realization to realization, as in the earlier
example of the randomly phased sine wave and reflecting the fact that the experi-
menter does not control the phase. As with the sine wave, the statistics may turn out
to be independent of time, owing to random phasing, but this does not accurately
reflect our intuition about the flow. The periodic oscillations, which are not really
random in the intuitive sense, are lumped in with the turbulence as part of the
random fluctuations and, in consequence, correlations extend to large temporal
separations (in principle, to infinite separations if the oscillations were precisely
periodic, although exact periodicity is unlikely in practice, given the possibility of
random phase drifting over many cycles). This is an unsatisfactory situation because
one would like to separate the physically distinct fluctuations due to the oscillations
from those occurring from cycle to cycle, which one might identify with turbulence.
One way of doing this is feasible if the phase of the oscillations can be experimentally
identified in particular realizations, for the flow statistics may then be conditioned by
restricting attention to the subensemble of realizations in which the phase has a
particular value (or even by time-shifting the data so that the phase becomes the
same in all realizations). The pressure fluctuations at some point within the bottle
provide a good measure of the oscillations because they strongly focus attention on
the Helmholtz resonance, rather than on the turbulent fluctuations in the jet. Thus, if
the statistics are conditioned by the internal pressure fluctuation, we expect the
oscillations to appear as a periodically varying mean flow, while periodically modu-
lated fluctuations about the mean reflect turbulence within the jet and may now
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decorrelate rapidly with temporal separation. One can then use phase-locked sam-
pling to calculate averages from (2.44). Conditioning the statistics in the above
manner effectively makes the phase a controlled parameter and the flow becomes
fundamentally similar to that of Figure 2.5, having statistics which vary periodically
with time, more closely expressing our intuition about the nature of the flow. We
should also remark that Fourier analysis in time allows one to identify periodic, or
nearly periodic, components of a flow, which appear as sharp peaks in the Fourier
transform, corresponding to the oscillation period and its harmonics.

The problem of uncontrolled parameters, like the phase in the above example,
appears in spades when one considers naturally occurring flows, such as the atmo-
spheric boundary layer in which we live. Furthermore, other than in the imagination,
one cannot repeat the experiment to generate an ensemble of realizations, unless
laboratory or numerical simulations of sufficient fidelity can be constructed, a pos-
sibility we ignore for the sake of argument. Thus, we are reduced to passive specta-
tors, although the flow can be observed at different times and locations. In the case of
the atmospheric boundary layer, Fourier analysis of the wind velocity with respect to
time shows that its transform has well-separated peaks corresponding to time scales
of the order of one minute and four days, which represent boundary-layer turbulence
and the passage of meteorological systems. It is thus reasonable to employ time
averages of the velocity with an averaging time large compared to the smaller of
these scales and small compared with the larger, allowing statistical properties of
boundary-layer turbulence to be measured. This procedure makes the longer time
scales part of the average, while the shorter ones become fluctuations, hopefully
decorrelating at temporal separations larger than a few minutes, if not to zero,
then at least to small values. The layer statistics depend on the wind speed above
the layer and its thermal stratification, to name but two time-varying parameters that
the experimenter has no control over. In a theoretical model, one might consider an
ensemble of realizations in which all such parameters are held fixed, presumably
avoiding the difficulties associated with uncontrolled parameters and multiple time
scales for variation of the real flow. Provided the parameters do not vary too rapidly
in reality, one would expect such ensemble statistics to agree with those measured
using appropriate conditioning or time averaging.

In summary, when ensembles of realizations are used to define the statistics of
turbulence they should not be defined blindly, but with the physical properties of the
flow in mind. In particular, all important parameters of the flow ought to be fixed,
otherwise one may end up with fluctuations that include components of the flow
other than turbulence and correlations that extend over large time or space separa-
tions.> This being said, most fundamental studies of turbulence concern more
straightforward cases than those envisaged above, for instance, simple jets and
boundary layers at high Reynolds numbers, or turbulence generated by passage of
a uniform, steady flow through a grid. For these relatively simple flows, in which the
experimenter is presumed to control all important parameters, it suffices to consider
a full ensemble of realizations generated by repeating the experiment, or equiva-
lently, since the flows are usually steady and decorrelate with temporal separation,

3 To caricature, it has jokingly been said that, once one has eliminated all features of a flow that one
understands, what remains is turbulence.
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time-averaged statistics. One hopes and expects that experience gained with such
flows will extend, at least in part, to turbulence in more complicated situations, such
as atmospheric and oceanic flows.

We now turn to more mundane matters, namely the definition of characteristic
functions and cumulants. The significance of cumulants lies in the fact that those of
order higher than two are zero for Gaussian variables, an important class of statistics
we discuss in the next section, but, for the moment, the definition of cumulants is
purely formal.

The first characteristic function, ¢(s), of a random variable U is the complex-
valued quantity given by

+00
o(s) = ¢*U = cos sU +isin sU = J &YP(U)dU (2.45)

—00

which will be recognized as the Fourier transform of the distribution function P(U).
Some mathematical properties of ¢(s) are as follows. Given ¢(s), we can determine
P(U) by Fourier inversion, so that ¢(s) contains the same information as the distribu-
tion of U. It is easily seen that ¢(0) =1 and ¢(—s) = ¢*(s), where “*” denotes
complex conjugation, while if P(U) = P(—U) then ¢(s) is real and ¢(—s) = ¢(s).
Writing the exponential in (2.45) as a power series, we obtain

o(s) = Za (’S) (2.46)

where a,, are the moments of U, while a similar procedure using U — iU ,is(U-U)

leads to
o(s) = &V Z (ZS) 2.47)

where u,, are the central moments. The second characteristic function is defined by
W(s) = log ¢(s) (2.48)

where a principal value for the logarithm is implied. The power series expansion of
W(s) is

W(s) = log{ ’S”Z (@) } ix% (2.49)
n=1 :

where «,, are referred to as the cumulants of U. After some algebra, it can be shown
that

Klzﬁ
'622112:742202
— — 3

K3y =Hu3 =1u

. (2.50)
K4=,LL4—3,LL%=M4—3M2

ks = pts — 10pap5 = 1’ — 1002 3

— —— —3
Kg = g — 1OM§ —15uop4 + 30u% =ub — 10143 — 15u% u* 4 30u?
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The cumulants are mainly significant because they are zero, apart from x; and «,
(i.e., W(s) is a quadratic function), in the case of a Gaussian probability distribution,
an important class of statistics we will discuss in the next section. They therefore
allow one to test whether a given variable is Gaussian or close to being Gaussian. It
should be noted that there are many distributions which lead to divergence of the
power series (2.49), but that, even in such cases, the cumulants are defined by the
(now formal) process described above, leading to perfectly definite formulas, (2.50),
for the cumulants, always presuming convergence of the moments.

Extensions can be made to the case of multiple variables. For instance, with two
variables,

- +00 p+oo0
¢(51,52):e’(51U1+52U2):J J feUitepy, U,)dU,dU, (2.51)

is the first characteristic function, the Fourier transform of P(U;, U,). The expansion
of ¢ is

o0
. (151) (ZSZ) i(s1Up+s, U, (151) (152)
@(s1,50) = n;(}anm o A1 Ut 0) M;O e (2.52)
where
m = UTUY, Mo = UUY (2.53)

are two-variable moments. For statistically independent variables

@(s1, ) = e1Uieialz = Ui ginla — ) (s1)gy (s,) (2.54)

and, more generally, the characteristic function of any number of independent vari-
ables is the product of their characteristic functions. A second characteristic function
is obtained by taking the logarithm of ¢(sq, ..., sy) and its (possibly formal) power
series expansion yields the cumulants

& =T,
(z/)
KZ iM,‘
(k) _
K3 Mil/ljuk
Gikl) _ S S —
Ky = U] — W Upth] — Wil Wjld] — Wil Uiy, (2.59)

as coefficients. For Gaussian variables, all cumulants above K<2/) are zero, as for a

single variable. Among other uses, this provides a basis for testing how near to joint
Gaussian a given set of variables are.

2.3 Gaussian Statistics and the Central Limit Theorem
A single variable is said to be Gaussian (or normal) if P(U) has the form

1 -0

L et (2.56)

P(U) =
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which is shown in Figure 2.6a and has the well-known symmetric bell shape with a
single hump centered on U. The mean, U, and standard deviation, o, are the only
parameters defining the Gaussian distribution and, if we multiply a Gaussian vari-
able by a constant or add a constant to it, the result remains Gaussian, with different
mean and standard deviation. From (2.56) it can be shown that the skewness and
flatness factors of a Gaussian variable are § = 0, T = 3, departures from which can
be used as measures of lack of normality of a given variable (although one can have
S =0, T =3 for a non-Gaussian distribution). Figures 2.6b and 2.6c illustrate dis-
tributions with S # 0 and T # 3. Two random variables are jointly Gaussian if

P(Uy, Uy) = 2.57)

1 1 1 u% n u) ) Uy
— expl—= A0 5,07
210094/ 1 — p? 21-p*|0 o 010,

where u, = U, — U,, o, is the standard deviations of U,, and p is the correlation
coefficient of the two variables. Thus, in addition to the two means and standard
deviations, the correlation coefficient enters as a parameter.

In general, an arbitrary number of random variables, Uy, ..., Uy, are said to have
joint Gaussian (or normal) statistics if their joint probability distribution function
has the form exp q(U,,), where q(U,,) is a quadratic function of the U,. The distribu-
tion function is then

[det(ZnR)]_l/zexp{ - %uTRlu} (2.58)

where u represents the column vector formed from the N fluctuations u, = U, — U,
and R,,,, = #,i,, is the positive-definite, symmetric matrix of correlations. Thus, the
means and correlations of jointly Gaussian variables suffice to fix their probability
distribution function and hence the full statistics of the variables. The distribution
(2.58) has a single maximum at the mean value, U, = U, and drops off rapidly as
|U, — U,|/o, increases, as in Figure 2.6a. It can be shown that the sum of jointly
Gaussian variables is Gaussian, while if Uy, ..., Uy are independent variables that
are individually Gaussian, they are also jointly Gaussian, since the joint distribution
of independent variables is the product of the individual distributions and the pro-
duct of exponentials is the exponential of the sum.

Suppose that the time-dependent variable U(%) is statistically steady and Gaussian.
By saying that the process U(t) is Gaussian, we mean that, no matter what N is used,
the values U(#;), ..., U(ty) of U(¢) at any N times are jointly Gaussian. Steadiness
implies that U is independent of time and that the correlation matrix
R,,, = R(t, — t,,), where u(t+ t)u(t) = R(t) is the correlation function of U(?).
Thus, for steady Gaussian processes, giving U and R(t) suffices to determine the
full (i.e., N-time, for any N) statistics of U(#). From u(¢ + t)u(t) = R(1), it is easily
shown that R(—t) = R(z), but considerably harder to demonstrate Kinchin’s theo-
rem that R(t) is the Fourier transform of a positive function, known as the frequency
spectrum. Provided R(7) has these properties, it can also be shown that a statistically
steady, Gaussian process, U(t), can be constructed that has the given R(z). Similar
results hold for statistically steady vector functions of space and time, such as the
velocity, Uj(x, t), in steady flow.
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Figure 2.6. Comparison of (a) the normal distribution
(for which T = 3, § = 0) with two other distributions,
illustrating the cases (b) S < 0 and (¢) T > 3. All distri-
butions have zero mean and variance 1. The distribu-
tion in (b) is skewed, while that in (c) has more
extensive tails than a Gaussian distribution, hence
T > 3.

As noted in the previous section, the cumu-
lants of a Gaussian distribution are zero at
orders above two. This follows from taking
the Fourier transform of (2.58) to obtain the
first characteristic function. The result is the
exponential of a quadratic function of the
transform variables, so the second character-
istic function vyields that quadratic function
and its series expansion terminates at order
two. Setting the fourth line of (2.55) to zero
yields

UM U] = UM Ut + Uil Uil + Ul Uiy,

(2.59)

which allows us to express fourth-order cen-
tral moments in terms of second-order corre-
lations for jointly Gaussian variables. This
result forms the basis of the so-called quasi-
normal approximation for closing the statis-
tical equations of turbulence, in which the
turbulent velocity fluctuations are assumed
to be a sufficiently good approximation to
Gaussian variables that (2.59) can be used
to express their fourth-order moments.

The importance of Gaussian statistics
derives from a profound result of the theory
of probability which concerns sums of inde-
pendent variables: the celebrated central limit
theorem. Let Uj,..., Uy, be statistically
independent variables with identical distribu-
tions functions, then U= U;+---+ Uy
approaches a Gaussian distribution as
N — oo. The requirement that the variables
be identically distributed, present in this, the
basic version of the theorem, can, in fact, be
relaxed considerably.* The more important
condition is that of independence and what
the theorem says is that the sum of a large

number of independent variables will be close to Gaussian. When the variables have
different distributions one can determine the limiting distribution from (2.56) with

(2.60)

* Proofs of the theorem require that the distribution functions of the random variables in the sum should
satisfy certain mathematical conditions, the details of which we do not go into.
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where a large number of terms must contribute significantly to the second sum,
otherwise one can ignore the effects of all but the small number of variables
which do, in which case there is no reason why U should be close to Gaussian.

There is a potentially important, and not widely appreciated, restriction on the
central limit theorem, which is that the asymptotic description as a Gaussian dis-
tribution, although accurate over the most probable part of the distribution of
U="U;+---+ Uy, is generally invalid in the tails of that distribution. This non-
uniformity occurs when U — U is of order N, much larger than the standard devia-
tion, O(N''/?), of U and therefore representing rarely attained departures from the
mean. Study of the asymptotic behavior when U — U = O(N) is known as large
deviations theory (see, e.g., Varadhan (1984)), which has important applications
to statistical mechanics and, more importantly for present purposes, to the statistical
properties of the small scales of turbulence (see, e.g., Frisch (G 1995), section 8.6.4).

The reader may care for an example, demonstrating both the central limit
theorem and its large deviation restriction. As assumed in the simplest version of
the theorem, let U; be identically distributed, independent random variables and
UN = U, +---4 Uy be the sum of the first N, so that UN™D = U™ 4 U,
gives UNTD a5 the sum of two independent variables. The reader can show
that, if V; and V, are independent, with distributions P;(V;) and P,(V,), then
the distribution of V =V, + V, is given by

o0}

P(V) = J Py(V1)Py(V = V)dV, 2.61)

—00

which is the convolution integral of P; and P, (hint: owing to independence, the joint
distribution of Vy, V, is P(Vy, V,) = P{(V{)P,(V,), while P_(V)dV is the integral of
P(Vy, V) over the infinitesimal strip V < V; + V, < V 4+ dV in the (Vy, V,) plane).
That is, the distribution of a sum of independent variables is the convolution of their
distributions. Applying this result with V; = UM and V, = Un+1, We have

o0
PNy = J PNWVP(U — V)dV (2.62)
—0Q
where PN is the distribution of the sum U™ = U, +--- + Uy and P denotes the
distribution function of the U;. In other words, each time an extra term is added to
the sum, its distribution is convolved with P, beginning with P(U) = P(U). In the
example we have in mind, the terms, U, in the sum have the Poisson distribution
P(U)=¢"Y for U > 0, P(U) = 0 when U < 0, and the reader may verify that
N UN-1,-U

P (U) = NoDL (2.63)
for U> 0, PM(U) =0 when U < 0, reduces to P(U) if N =1 and satisfies the
recurrence relation (2.62). The reader is encouraged to calculate and plot the prob-
ability distribution, NY?P™(NY2(V +N)), of the normalized variable V =
(U —=N)/N'? as a function of V for a series of increasing values of N, using a
computer (the normalization is based on the mean, UN) = N, and standard devia-
tion, N'/2, of UN). This bears out the central limit theorem graphically, with quite
small N sufficient for a roughly Gaussian-looking curve, although later convergence
is rather slow.
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